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Regional Magnetic Fields as
Navigational Markers for

Sea Turtles
Kenneth J. Lohmann,* Shaun D. Cain, Susan A. Dodge,

Catherine M. F. Lohmann

Young loggerhead sea turtles (Caretta caretta) from eastern Florida undertake
a transoceanic migration in which they gradually circle the north Atlantic Ocean
before returning to the North American coast. Here we report that hatchling
loggerheads, when exposed to magnetic fields replicating those found in three
widely separated oceanic regions, responded by swimming in directions that
would, in each case, help keep turtles within the currents of the North Atlantic
gyre and facilitate movement along the migratory pathway. These results imply
that young loggerheads have a guidance system in which regional magnetic
fields function as navigational markers and elicit changes in swimming direction
at crucial geographic boundaries.

Hatchling loggerhead sea turtles (Caretta
caretta) from eastern Florida begin a long-
distance migration immediately after entering
the sea (1). Turtles swim from the Florida
coast to the North Atlantic gyre, the circular
current system surrounding the Sargasso Sea,
and remain within the gyre for a period of
years (2–4). During this time, they gradually
migrate around the Atlantic before returning
to the North American coast (5, 6).

For young loggerheads, conditions within
the North Atlantic gyre are favorable for
survival and growth, but straying beyond the
latitudinal extremes of the gyre is often fatal
(2, 3). As the northern edge of the gyre
approaches Portugal, the east-flowing current
divides. The northern branch continues past
Great Britain and the water temperature de-
creases rapidly. Loggerheads swept north in
this current soon die from the cold (2–4).
Similarly, turtles that venture south of the
gyre risk being swept into the South Atlantic

current system and carried far from their
normal range. An ability to recognize the
latitudinal extremes of the gyre, and to re-
spond by orienting in an appropriate direc-
tion, might therefore have adaptive value.

Previous experiments have shown that
hatchling loggerheads can detect magnetic
inclination angle (7) and field intensity (8),
two geomagnetic features that vary across
Earth’s surface and could, in principle, pro-
vide positional information to a migrating
turtle (9, 10). In these initial experiments, one
of the two parameters was held constant
while the other was varied. This approach
was necessary to demonstrate that turtles can
detect each field element. In nature, however,
these field elements vary together across
Earth’s surface. Most pairings of inclination
and intensity used in previous studies resulted
in fields with combinations of parameters that
do not naturally occur in the North Atlantic
(7).

To determine whether hatchlings can dis-
tinguish among the magnetic fields actually
found in different oceanic regions, we sub-
jected hatchling loggerheads to fields repli-
cating those found in three widely separated
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locations along their migratory route in the
North Atlantic gyre. Turtles were tested in a
circular, water-filled arena that was surround-
ed by a computerized coil system (11), which
was used to control the magnetic field in
which each turtle swam. Each hatchling was
tethered to an electronic tracking unit that
relayed the position of the turtle to a comput-
er in an adjacent room (11, 12).

Turtles exposed to a field replicating one
that exists offshore near northern Florida swam
east-southeast (Fig. 1). Those exposed to a field
like one found near the northeastern edge of the
gyre swam approximately south. Turtles ex-
posed to a field like one found near the south-
ernmost part of the gyre swam west-northwest.
All three groups were significantly oriented at
P , 0.05 or less (Fig. 1). The Mardia-Watson-
Williams test (13) indicated that significant dif-
ferences existed between the three distributions
(W 5 19.5, P , 0.001). Thus, the results show
that loggerhead turtles can distinguish among
magnetic fields that exist in widely separated
oceanic regions.

In addition, the orientation behavior
elicited by each of the three fields is con-
sistent with the interpretation that these
responses have functional significance in
the migration. Near northern Florida, ori-
entation toward the east-southeast would
lead turtles away from the North American
coast and farther into the Gulf Stream. The
Gulf Stream veers eastward soon after pass-
ing Florida; when it does, turtles positioned
safely away from the gyre perimeter are
presumably less likely to stray into fatally
cold water that lies to the north. In the

northeastern region of the gyre, the Gulf
Stream divides. Southward orientation in
this area is likely to help turtles remain in
the gyre and avoid the North Atlantic Drift,
the north-flowing current that can carry
turtles into the cold oceanic regions of
Great Britain and Scandinavia (2– 4 ). Near
the southernmost boundary of the gyre,
orientation to the west-northwest is consis-
tent with the migratory route of the turtles.
Such orientation may prevent turtles from
straying too far south and may also help
them to remain in favorable currents that
facilitate movement back toward the North
American coast, where most Florida log-
gerheads spend their late juvenile years (6 ).
We conclude that specific magnetic fields
characteristic of widely separated oceanic
regions elicit orientation responses that are
likely to help turtles remain safely within
the gyre and progress along the migratory
route.

The hatchlings that we tested had never
been in the ocean. Thus, our results also
indicate that specific magnetic fields elicit
orientation responses in turtles that have not
had previous migratory experience. The abil-
ity to express a response upon the first en-
counter with a given field may be critical to
young turtles, because those swept out of the
gyre usually die before they can regain entry
(2–4). Turtles probably cannot learn to rec-
ognize dangerous geographic areas, because
entering such regions is in itself fatal.

One possible interpretation of the results
is that hatchlings inherit a large-scale mag-
netic map (14–16) that enables them to

continuously approximate their position any-
where in the North Atlantic. However, hatch-
lings might instead emerge from their nests
programmed only to swim in specific direc-
tions if and when they encounter magnetic
fields resembling those in a few crucial oce-
anic regions where the risk of displacement
from the gyre is high. Thus, young turtles
might remain within the gyre and advance
blindly along their migratory route without
any real conception of their geographic posi-
tion and without the ability to determine their
position relative to a goal. Such a system
would not preclude the development of more
sophisticated navigational abilities as the tur-
tles mature or the possible involvement of
additional cues and mechanisms in guiding
the first migration.

From an evolutionary perspective, the
responses that we have reported are not
incompatible with either secular variation
(17 ) or magnetic polarity reversals. As
Earth’s field gradually changes, strong se-
lective pressure presumably acts to main-
tain an approximate match between the re-
sponses of hatchlings and the fields that
mark critical geographic boundaries at any
point in time (18 –20). Although responses
to regional fields might be rendered useless
during occasional periods of rapid field
change associated with magnetic polarity
reversals or excursions (21), these sporadic
events do not preclude the evolution of
magnetic responses during the intervening
and usually much longer intervals when
Earth’s field changes more slowly and is
relatively stable (22).

Irrespective of these considerations, our
results provide direct evidence that young sea
turtles can in effect exploit regional magnetic
fields as open-ocean navigational markers.
The turtles emerge from their nests ready to
respond to specific fields with directed move-
ment; these responses are appropriate for
keeping young turtles within the gyre system
and facilitating movement along the migrato-
ry route. Such couplings of directional swim-
ming to a regional field may provide the
building blocks or “subroutines” (23) from
which natural selection can sculpt a sequence
of responses capable of guiding first-time
ocean migrants along complex migratory
routes. Similar mechanisms might function
not only in sea turtles but in diverse ocean
migrants such as fish and marine mammals,
as well as in some migratory birds (24, 25).
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Neuroanatomy of
Magnetoreception: The Superior
Colliculus Involved in Magnetic

Orientation in a Mammal
Pavel Němec,1* Jens Altmann,2 Stephan Marhold,3

Hynek Burda,4 Helmut H. A. Oelschläger2

The neural substrate subserving magnetic orientation is largely unknown in
vertebrates and unstudied in mammals. We combined a behavioral test for
magnetic compass orientation in mole rats and immunocytochemical visual-
ization of the transcription factor c-Fos as a marker of neuronal activity. We
found that the superior colliculus of the Zambian mole rat (Cryptomys anselli)
contains neurons that are responsive to magnetic stimuli. These neurons are
directionally selective and organized within a discrete sublayer. Our results
constitute evidence for the involvement of a specific mammalian brain struc-
ture in magnetoreception.

Behavioral studies have provided abundant
evidence for magnetic compass orientation
among vertebrates, but its sensory and neu-
ral basis remains enigmatic (1, 2). A few
electrophysiological studies have addressed
the involvement of a specific brain struc-
ture in the processing of magnetic informa-
tion (3–9). This method, however, has a
particular drawback: It does not allow sys-
tematic screening of neuronal activities in
the central nervous system. Therefore,
well-aimed electrophysiological studies
cannot be conducted in the absence of a
known receptor site. Here, we investigated
magnetoreception by combining two estab-
lished methodological approaches: a behav-
ioral test designed to assess magnetic com-
pass orientation in mole rats (10, 11) and
immunocytochemical visualization of the
transcriptional regulatory protein c-Fos as a

marker of neuronal activity, a neuroana-
tomical technique used extensively in sen-
sory research (12–14 ).

We detected the evoked expression of c-
Fos in order to map neuronal activities that
had been entrained either by active orienta-
tion via the magnetic compass or by changes
in the ambient magnetic field. Experimental
animals built nests in an unfamiliar arena
[i.e., performed a magnetically based spatial
orientation task (15)] under different test con-
ditions (16). Controls (used also to assess
basal levels of c-Fos expression) were of two
types: (i) untreated animals freely moving
within a familiar home area, and (ii) animals
resting or sleeping in a shielded magnetic
field. We focused on neuronal activities in the
superior colliculus (SC), a prominent subcor-
tical sensorimotor integrator that plays an
important role in orientation to diverse stim-
uli (17–19). The unique intrinsic circuitry of
the SC (20) may serve to integrate magnetic
information with multimodal sensory and
motor information. Magnetic stimuli thus
may directly elicit orientation responses via
initiation of activity in the premotor efferent
collicular pathways.

The SC in all of the experimental and
control animals displayed a symmetrical
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