DETAILED MATERIAL BALANCE

Basis : 200 TPD of Acrylic Acid .
(Plant works continuously for 24 hours a day)

$\mathrm{CH}_{2}=\mathrm{CHCHO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CH}_{2}=\mathrm{CHCOOH}$ acrylic acid

Compound Molecular weight

Propylene 42
Acrylic acid(AA) 72
Acetic acid 60
Acrolein 56
Oxygen 16
Carbon dioxide 44
Propylene required to produce 200 TPD of AA

$$
\begin{aligned}
& 1 \mathrm{kmol} \text { of } \mathrm{C}_{3} \mathrm{H}_{6} \quad \rightarrow 1 \mathrm{kmol} \text { of AA } \\
& 42 \mathrm{~kg} / \mathrm{hr} \text { of } \mathrm{C}_{3} \mathrm{H}_{6} \quad \rightarrow 72 \mathrm{~kg} / \mathrm{hr} \text { of AA }
\end{aligned} \quad \begin{aligned}
\mathrm{C}_{3} \mathrm{H}_{6} \quad \text { required to produce } 200 \mathrm{TPD} \text { of AA } \\
=200 \times(42 / 72)=116.67 \mathrm{TPD} \text { of } \mathrm{C}_{3} \mathrm{H}_{6}
\end{aligned} \quad \begin{aligned}
& \text { At a yield of } 78 \% \\
& \text { kmol of } \mathrm{C}_{3} \mathrm{H}_{6} \quad \text { required }=116.67 / 0.78=149.57 \mathrm{TPD} \\
&=148.38 \mathrm{kmol} / \mathrm{hr}
\end{aligned}
$$

Oxygen required :

1 kmol of $\mathrm{C}_{3} \mathrm{H}_{6} \quad$ requires $\rightarrow 3 / 2 \mathrm{kmol}$ of O_{2}
Hence O_{2} required $=3 / 2 \times 148.38 \mathrm{kmol} / \mathrm{hr}$

$$
=222.57 \mathrm{kmol} / \mathrm{hr}
$$

REACTOR I

Oxidation of Propylene to Acrolein .
(From Literature)

$$
\mathrm{CH}_{2}=\mathrm{CHCH}_{3}+\mathrm{O}_{2} \xrightarrow[\text { acrolein }]{\rightarrow \mathrm{CH}_{2}=\mathrm{CHCHO}+\mathrm{H}_{2} \mathrm{O}}
$$

Catalyst composition : Ni. Fe. $\mathrm{Zn} . \mathrm{Bi}$. or $\mathrm{Zn}+\mathrm{Co}$ (Fe promotion) Contact time $=3.6 \mathrm{sec}$

Average temperature $=355^{\circ} \mathrm{C}$
Feed Composition : $\mathrm{C}_{3} \mathrm{H}_{6}$: Air : Steam :: $1: 7.75: 3.75$
Overall conversion of $\mathrm{C}_{3} \mathrm{H}_{6}=100 \%$
Conversion to acrolein $=70 \%$
Conversion to AA $=11 \%$
$\mathrm{C}_{3} \mathrm{H}_{6} \quad$ fed $=148.38 \mathrm{kmol} / \mathrm{hr}$
Steam fed $=556.42 \mathrm{kmol} / \mathrm{hr}$
Air fed $=148.38 \times 7.75=1149.94 \mathrm{kmol} / \mathrm{hr}$
O_{2} entering $=241.48 \mathrm{kmol} / \mathrm{hr}$
N_{2} in $=\mathrm{N}_{2}$ out $=908.45 \mathrm{kmol} / \mathrm{hr}$
O_{2} used in the reactor $=148.38 \mathrm{kmol} / \mathrm{hr}$
O_{2} left unreacted $=93.1 \mathrm{kmol} / \mathrm{hr}$
Acrolein produced $=148.38 \times 0.7=103.866 \mathrm{kmol} / \mathrm{hr}$
AA produced $=148.0 .11=16.32 \mathrm{kmol} / \mathrm{hr}$
Steam produced $=103.866 \mathrm{kmol} / \mathrm{hr}$
Side products produced $\left(\mathrm{CO}_{2}+\right.$ Acetic acid $)=48.38 \times 0.19=28.192$
(in equal quantities)
$\mathrm{kmol} / \mathrm{hr}$
Total steam leaving the reactor $=660.286 \mathrm{kmol} / \mathrm{hr}$

REACTOR II

Oxidation of Acrolein to Acrylic acid
(From literature)

$$
\mathrm{CH}_{2}=\mathrm{CHCHO}+1 / 2 \mathrm{O}_{2} \rightarrow \underset{\text { acrylic acid }}{\mathrm{CH}_{2}=\mathrm{CHCOOH}}
$$

Catalyst composition: $\mathrm{Mo}_{12} \mathrm{~V}_{1.9} \mathrm{Al}_{1.0} \mathrm{Cu}_{2.2}$ (support - Al sponge)
Contact time : 1-3 sec
Average temperature $-300^{\circ} \mathrm{C}$
Acrolein conversion - 100\%
Yield of AA - 97.5\%

Feed:

$$
\begin{aligned}
& \mathrm{O}_{2}=93.1 \mathrm{kmol} / \mathrm{hr} \\
& \mathrm{~N}_{2}=908.45 \mathrm{kmol} / \mathrm{hr} \\
& \text { Steam }=660.286 \mathrm{kmol} / \mathrm{hr} \\
& \text { Acrolein }=103.866 \mathrm{kmol} / \mathrm{hr} \\
& \text { Acylic acid }=16.32 \mathrm{kmol} / \mathrm{hr} \\
& \text { Acetic acid }=14.096 \mathrm{kmol} / \mathrm{hr} \\
& \mathrm{CO}_{2}=14.096 \mathrm{kmol} / \mathrm{hr}
\end{aligned}
$$

> AA formed in reactor $\mathrm{II}=101.26 \mathrm{kmol} / \mathrm{hr}$
> By products formed $=2.5966 \mathrm{kmol} / \mathrm{hr}$
> O_{2} reacted $=51.352 \mathrm{kmol} / \mathrm{hr}$
> O_{2} unreacted $=41.167 \mathrm{kmol} / \mathrm{hr}$
> N_{2} in $=\mathrm{N}_{2}$ out $=908.45 \mathrm{kmol} / \mathrm{hr}$

Total AA formed in 2 reactors $=101.26+16.32=117.58 \mathrm{kmol} / \mathrm{hr}$
Total Acetic acid produced $=15.3942 \mathrm{kmol} / \mathrm{hr}$
Total CO_{2} produced $=15.3942 \mathrm{kmol} / \mathrm{hr}$

ABSORBER:

Feed entering at the bottom of the absorber.

Acrylic acid	$=117.58 \mathrm{kmol} / \mathrm{hr}$
Acetic acid	$=15.38 \mathrm{kmol} / \mathrm{hr}$
CO_{2}	$=15.38 \mathrm{kmol} / \mathrm{hr}$
O_{2}	$=41.167 \mathrm{kmol} / \mathrm{hr}$
N_{2}	$=908.47 \mathrm{kmol} / \mathrm{hr}$
Steam	$=660.286 \mathrm{kmol} / \mathrm{hr}$

From literature:
Acrylic acid and acetic acid is absorbed using water as solvent.
Gases $\mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}$ and small amount of steam leave the absorber at the top.
Assumptions :
90% of the steam entering gets condensed.
Solvent:

Water entering at the top $=488.6 \mathrm{kmol} / \mathrm{hr}$

Off gases leaving at the top :

$$
\begin{array}{ll}
\mathrm{CO}_{2} & =15.38 \mathrm{kmol} / \mathrm{hr} \\
\mathrm{~N}_{2} & =908.4 \mathrm{kmol} / \mathrm{hr} \\
\mathrm{O}_{2} & =41.167 \mathrm{kmol} / \mathrm{hr} \\
\mathrm{AA} & =1.1758 \mathrm{kmol} / \mathrm{hr}
\end{array}
$$

$$
\text { Acetic acid }=0.1539 \mathrm{kmol} / \mathrm{hr}
$$

Product liquid leaving at the bottom of the absorber to recovery section:

$$
\begin{aligned}
\text { Acrylic acid } & =116.404 \mathrm{kmol} / \mathrm{hr} \\
\text { Acetic acid } & =15.236 \mathrm{kmol} / \mathrm{hr} \\
\text { water } & =1082.85 \mathrm{kmol} / \mathrm{hr}
\end{aligned}
$$

Mol fraction of AA in the product stream $=0.0958=9.58 \%$
Weight fraction of AA in the product stream $=0.2911=29.11 \%$

SOLVENT EXTRACTION COLUMN :

Feed from the bottom of the absorber:

$$
\begin{aligned}
\text { Acrylic acid } & =116.404 \mathrm{kmol} / \mathrm{hr} \\
\text { Acetic acid } & =15.236 \mathrm{kmol} / \mathrm{hr} \\
\text { water } & =1082.85 \mathrm{kmol} / \mathrm{hr}
\end{aligned}
$$

Solvent with high solubility for acrylic acid and acetic acid, and low solubility with water is used to extract AA acid from absorber stream.

Assumption: Solvent required for 99.5% extraction of AA is $500 \mathrm{kmol} / \mathrm{hr}$.
Recycled stream from solvent recovery column and waste tower.
Acrylic acid $=0.53 \mathrm{kmol} / \mathrm{hr}$
Acetic acid $=0.08 \mathrm{kmol} / \mathrm{hr}$
Water $\quad=129.94 \mathrm{kmol} / \mathrm{hr}$

Total Acrylic acid in $=116.934 \mathrm{kmol} / \mathrm{hr}$
Total Acetic acid in $=15.316 \mathrm{kmol} / \mathrm{hr}$
Total water in $=1212.79 \mathrm{kmol} / \mathrm{hr}$

Extract phase contains (to solvent recovery plant):
Acrylic acid $=0.995 \times 116.404=115.83 \mathrm{kmol} / \mathrm{hr}$.
Acetic acid $=15.16 \mathrm{kmol} / \mathrm{hr}$
Water $\quad=21.657 \mathrm{kmol} / \mathrm{hr}$
Solvent $=488.5 \mathrm{kmol} / \mathrm{hr}$
Raffinate phase contains (to waste tower):
Acrylic acid $=1.104 \mathrm{kmol} / \mathrm{hr}$
Acetic acid $=0.156 \mathrm{kmol} / \mathrm{hr}$
Water $\quad=1191.13 \mathrm{kmol} / \mathrm{hr}$
Solvent $=11.5 \mathrm{kmol} / \mathrm{hr}$

SOLVENT RECOVERY COLUMN :

Assumption: Complete recovery of solvent occurs.
Bottom product contains only acetic acid and acrylic acid.
Feed : Extract phase from the liquid-liquid extractor:
Acrylic acid $=115.83 \mathrm{kmol} / \mathrm{hr}$.
Acetic acid $=15.16 \mathrm{kmol} / \mathrm{hr}$
Water $\quad=21.657 \mathrm{kmol} / \mathrm{hr}$

Solvent $=488.5 \mathrm{kmol} / \mathrm{hr}$
Upstream contains (recycled to extraction column) :
Solvent $=488.5 \mathrm{kmol} / \mathrm{hr}$
Acrylic acid $=0.53 \mathrm{kmol} / \mathrm{hr}$
Acetic acid $=0.08 \mathrm{kmol} / \mathrm{hr}$
Water $\quad=21.657 \mathrm{kmol} / \mathrm{hr}$

Column bottoms contain (to acid tower) :
Acrylic acid $=115.3 \mathrm{kmol} / \mathrm{hr}$
Acetic acid $=15.08 \mathrm{kmol} / \mathrm{hr}$

WASTE TOWER

Assumption : Bottom product contains water and all acrylic acid, acetic acid entering the column.

Feed : Raffinate phase from the liquid-liquid extractor.
Acrylic acid $=1.104 \mathrm{kmol} / \mathrm{hr}$
Acetic acid $=0.156 \mathrm{kmol} / \mathrm{hr}$
Water $\quad=1191.13 \mathrm{kmol} / \mathrm{hr}$
Solvent $=11.5 \mathrm{kmol} / \mathrm{hr}$
Column bottom stream (to waste water treatment plant)
Water $=1082.845 \mathrm{kmol} / \mathrm{hr}$
Acetic acid $=0.156 \mathrm{kmol} / \mathrm{hr}$
Acrylic acid $=1.104 \mathrm{kmol} / \mathrm{hr}$
Column overhead stream (recycled to extraction column)
Solvent $=11.5 \mathrm{kmol} / \mathrm{hr}$
Water $=108.2 \mathrm{kmol} / \mathrm{hr}$
ACID TOWER (Designed as a major equipment)
Assumption : Top product is $95 \mathrm{wt} . \%$ acetic acid Bottom product is $99.5 \mathrm{wt} . \%$ acrylic acid.

Feed :

Acrylic acid $=115.3 \mathrm{kmol} / \mathrm{hr}$
Acetic acid $=15.08 \mathrm{kmol} / \mathrm{hr}$
Top product
Acetic acid $=14.883 \mathrm{kmol} / \mathrm{hr}$
Acrylic acid $=0.14 \mathrm{kmol} / \mathrm{hr}$
Acetic acid produced $=21.67$ TPD at 95% purity
Bottom product
Acrylic acid $=115.16 \mathrm{kmol} / \mathrm{hr}$
Acetic acid $=0.197 \mathrm{kmol} / \mathrm{hr}$
Acrylic acid produced $=\mathbf{2 0 0}$ TPD at $\mathbf{9 9 . 5 \%}$ purity

